Convergence Tests Summary
Summary
Good to Know
Any Series diverges if:
- $\lim\limits_{n\rightarrow\infty}s_n = c \neq 0$
If $n$ is close enough to infinity, we’ll be constantly adding a constant $c$
Regardless of it’s value, if it’s not 0, it’ll tend to $+\infty$ or $-\infty$
Alternating Series Test
Series Converges if:
- $\lim\limits_{n\rightarrow\infty}s_n = 0$
- $\lvert a_{n+1}\rvert \leq \lvert a_{n}\rvert$
- It can be $\leq$ because $\lim\limits_{n\rightarrow\infty}s_n = 0$ guarantees it’ll end up at $0$
Integral Test
If it’s possible to map $a_n = f(n)$
If $f(n)$ is:
- Continuous
- Decreasing
- Positive, hence $a_n$ must be all positive
If $N$ is some positive integer
$\int_{N}^{\infty} f(n)$ converges then $\sum_{n=N}^{\infty}a_n$ converges
$\int_{N}^{\infty} f(n)$ diverges then $\sum_{n=N}^{\infty}a_n$ diverges
Comparison Test
If $a_n > 0$ and $b_n > 0$
If $a_n \leq b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges
If $a_n \geq b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges
Limit Comparison Test
If $a_n > 0$ and $b_n > 0$
If $N$ is some positive integer
$\lim_{n\rightarrow\infty}(a_n/b_n)$ = Test Result
Result | a;b |
---|---|
$> 0$ | Converge;Converge OR Diverge;Diverge |
$= 0$ | Converge;Converge |
$\infty$ | Diverge;Diverge |
Other | No Conclusion |
Absolute/Conditional Convergence
If $\sum a_n$ converges, it’s Convergent
If $\sum\lvert a_n\rvert$ converges, it’s Absolutely Convergent
If a series is Absolutely Convergent, it’s Convergent.
If a series is Convergent but not Absolutely Convergent, it’s Conditionally Convergent
P-Series
\[\sum_{n=0}^{\infty}1/(p^n)\]p | |
---|---|
$< 1$ | Converge |
$\geq 1$ | Diverge |
Ratio Test
$\lim\limits_{n\rightarrow\infty}\lvert a_{n+1}/a_n\rvert$ = Test Result
Result | |
---|---|
$< 1$ | Absolute Converge |
$> 1$ | Diverge |
$= 1$ | No Conclusion |
Root Test
$\lim\limits_{n\rightarrow\infty}(a_n)^{1/n}$ = Test Result
Result | |
---|---|
$< 1$ | Absolute Converge |
$> 1$ | Diverge |
$= 1$ | No Conclusion |